
Does Active Learning Reduce Human Coding?: A
Systematic Comparison of Neural Network with nCoder

Jaeyoon Choi1[0000-0002-8893-7898], Andrew R. Ruis1[0000-0003-1382-4677], Zhiqiang Cai1[0000-
0002-2107-3378], Brendan Eagan1[0000-0002-9189-1747], and David Williamson Shaffer1[0000-0001-

9613-5740]

1 University of Wisconsin-Madison, Madison, WI 53706, USA
jaeyoon.choi@wisc.edu

Abstract. In quantitative ethnography (QE) studies which often involve large
datasets that cannot be entirely hand-coded by human raters, researchers have
used supervised machine learning approaches to develop automated classifiers.
However, QE researchers are rightly concerned with the amount of human coding
that may be required to develop classifiers that achieve the high levels of accu-
racy that QE studies typically require. In this study, we compare a neural network,
a powerful traditional supervised learning approach, with nCoder, an active
learning technique commonly used in QE studies, to determine which technique
requires the least human coding to produce a sufficiently accurate classifier. To
do this, we constructed multiple training sets from a large dataset used in prior
QE studies and designed a Monte Carlo simulation to test the performance of the
two techniques systematically. Our results show that nCoder can achieve high
predictive accuracy with significantly less human-coded data than a neural net-
work.

Keywords: Coding, Automated Classifiers, Machine Learning, Active Learn-
ing, nCoder.

1 Introduction

Coding is a process of defining concepts of interest (Codes) and identifying where they
occur in qualitative data [23]. Broadly speaking, coding can be accomplished in two
ways: (a) a human can read each segment of data and decide whether or not a given
Code is present (or to what extent it is present); or (b) a computer can apply a classifi-
cation algorithm that takes each segment of data as input and returns a coding decision
as output. Because many quantitative ethnography (QE) studies involve more data than
a human could reasonably read—let alone code—researchers often use automated clas-
sifiers to code their data. In order to do that, however, QE researchers need to develop
classification algorithms that reliably predict the coding decisions of a human rater. Of
course, developing an automated classifier typically requires some amount of human-
coded data, which raises a key question: How much data does a human need to code in
order to produce an accurate classification algorithm?

2

QE researchers typically use machine learning (ML) techniques to develop classifi-
cation systems [6, 18]. Most commonly, they use either (a) traditional supervised learn-
ing techniques—such as support vector machines or neural networks—which induce a
classifier from a set of human-rated excerpts (linear process), or (b) active learning
techniques, in which the machine can repeatedly query a human rater to induce a clas-
sifier (iterative process).
However, it is impossible to determine a priori the size of the sample needed to train

a classifier using any supervised learning technique, so comparison of machine learning
techniques can only be done empirically [8]. To do this, researchers typically train clas-
sifiers on the same training data using traditional supervised learning techniques—and
in some cases, active learning approaches (see, e.g., [4, 11]). While this makes it pos-
sible to compare the performance of classifiers on a given sample, it does not control
for sampling bias, and thus generalizability is limited. Furthermore, and most im-
portantly, these studies typically do not reflect the non-deterministic nature of the hu-
man-in-the-loop active learning process. Because the outcomes of active learning pro-
cesses are contingent on the specific interactions between the machine and the human,
conducting an experiment to examine this requires a significant investment of human
labor. Hence, to the best of our knowledge, there have been no systematic comparisons
between traditional supervised learning and active learning techniques, and thus no ba-
sis for determining the amount of human coding required to train a classifier with suf-
ficient predictive accuracy.
In this paper, we systematically compare the performance of a traditional supervised

learning approach and an active learning approach on a given dataset. Specifically, we
compare an artificial neural network, a powerful traditional supervised learning tech-
nique, with nCoder, an active learning technique commonly used in QE studies. In a
pilot study using one large dataset to develop automated classifiers for two Codes, we
found that nCoder can achieve high predictive accuracy with significantly less human-
coded data than a neural network.

2 Theory

2.1 Coding

At the most basic level, a Code is a label that is applied to some segment of data. But
each time we apply a label to a piece of data, we are making an assertion about meaning.
In the context of QE research, coding decisions create a linkage between some record
of events (data) and interpretation of those events, reflecting the linkage asserted by
Codes between the cultural meanings that people in some community construct and
researchers’ theoretically grounded interpretations of that culture [23].
Because coding is the lowest level at which assertions about the meaning of data are

made, it is particularly important that coding decisions are accurate interpretations—
that is, interpretations that both members of the community being studied and informed
researchers would agree are fair representations of the community, of theory, and of the
data itself. If we lack sufficient certainty that the codes in data mean what we think they

3

mean, then any analysis conducted on those codes will be at best useless and at worst
epistemically violent.
To achieve the high level of coding accuracy that this requires, researchers tradition-

ally code data by hand. While there are many approaches to manual coding [15, 17,
21], all of them involve reading segments of data and deciding whether or not a code is
present (or to what extent it is present). That is, the researcher makes each assertion
about the interpretation of a segment of data based on close reading and expertise. But
this approach is also slow, laborious, and prone to random error [19], and many com-
munities now produce records of events that are far too large to code in this way.
As a result, researchers often use automated classifiers to code data at scale. Auto-

mated classifiers are algorithms, or sets of rules, that take features of data as input and
return coding decisions as output. In the case of text data, the rules could be simple—
for example, if the word “warbler” is present, the Code BIRD is applied—or they could
involve complex interactions of words, grammar, syntax, capitalization, punctuation,
sentence length or other features of written language. But whatever their rules are, au-
tomated classifiers are evaluated based on how well they predict the coding decisions
of a human expert—that is, they are evaluated based on some measure of inter-rater
reliability (IRR) between the classifier and a human expert [9]. Because codes are as-
sertions of meaning, automated classifiers need to make the coding decisions that a
human would have made if the human had read and coded the data.
To develop or train automated classifiers that achieve high predictive accuracy rel-

ative to human experts—that is, that meet or exceed some standard for IRR—
researchers typically use one or more techniques broadly classed as machine learning.

2.2 Machine Learning

To develop automated classifiers for text data, machine learning techniques analyze
corpora and combine features of text into classification rules [10]. These techniques
can be broadly divided into (a) unsupervised learning and (b) supervised learning. Un-
supervised learning techniques, such as those broadly classed as topic modeling (e.g.,
latent Dirichlet allocation [16]), consist of generative models that take a set of raw,
uncoded text data and extract groups of keywords that are related to one another. These
groups can be taken as codes, and human researchers can inspect the keywords (i.e., the
classification rules) to try to discern the Codes to which they refer. Unsupervised mod-
els are often used in exploratory analyses, as they work quickly and require no initial
coding—that is, they produce candidate automated classifiers with virtually no human
effort. However, the resulting codes may not map to Codes grounded in theory, nor to
meaningful elements of a community’s culture. Moreover, codes generated by unsu-
pervised learning techniques often achieve poor predictive accuracy [2, 6, 23].
To induce automated classifiers that better align with theory and the culture of the

community being studied, researchers more commonly use supervised learning tech-
niques, which operate not on raw text data but on coded text data. That is, supervised
learning techniques are given information about which segments of text are associated
with some Code and which are not. There are many supervised learning techniques, but

4

they are broadly classed into traditional supervised learning and active learning. Tra-
ditional supervised learning techniques—including support vector machines, naïve
Bayes, logistic regression, and neural networks—use a single set of human-coded data
as an input to induce a model that predicts coding decisions on an unseen dataset. Active
learning techniques—including Prodigy and nCoder—facilitate multiple cycles involv-
ing interactions between the machine and the human rater to guide incremental classi-
fier refinement [22, 24, 25]. That is, where traditional supervised learning is linear,
active learning is iterative.
However, all supervised learning techniques present several challenges for research-

ers. While such techniques generally perform better when the amount of human-coded
data used to train the classifier is larger [20], it is not possible to compute a priori the
size of the sample needed to train a classifier that achieves sufficient predictive accu-
racy. This is because the size of the sample needed to train a classifier is dependent in
part on properties of that classifier (or its corresponding Code), which are difficult if
not impossible to determine in advance. For example, a Code that appears infrequently
in data may require more training data than one that appears frequently, and the fre-
quency, or base rate, of a code in data can only be estimated once a human rater has
coded some data. Thus, it is difficult to determine whether different techniques for de-
veloping automated classifiers differ significantly in the amount of human coding they
require.

2.3 Assessing the Performance of Machine Learning Approaches

Research on the comparative advantages of different machine learning techniques has
thus far been limited to (a) multi-case comparisons of traditional supervised learning
approaches or (b) single-case studies of active learning approaches. In these studies,
researchers compare traditional supervised learning techniques to one another using the
same set of human-coded training data, and they compare traditional supervised learn-
ing with active learning by giving the active learning algorithm the same training data
but uncoded. In such studies, the predictive accuracy of each machine learning tech-
nique is based on some IRR metric between the classifier and a human expert, and IRR
scores can be compared directly because each technique received the exact same train-
ing data. For instance, Hartmann and colleagues [12] compared ten automated text clas-
sification algorithms—including support vector machines, random forest, and naïve
Bayes—across 41 social media datasets, concluding that either random forest or naïve
Bayes shows the highest accuracy values across the tasks. Goudjil and colleagues [11]
compared support vector machines against a novel active learning method that supple-
mented the SVM algorithm, concluding that the active learning method can signifi-
cantly reduce the amount of human inputs while enhancing predictive accuracy.
However, existing approaches for comparing machine learning techniques do not

enable systematic comparison due to two critical limitations. (1) For a given dataset,
techniques are only compared using a single training set—that is, a single sample of the
dataset. While this enables performance measurement and ranking based on that sam-
ple, there is no control for sampling bias, and thus there is no control for error in the

5

measurement of predictive accuracy based on that dataset or the population from which
it was drawn. (2) This approach does not enable comparison of active learning tech-
niques systematically, both because the need for a human in the loop is time- and labor-
intensive and because the outcomes of active learning processes are dependent on the
specific interactions between the machine and the human, which are non-deterministic.
As a result, there are no studies that have systematically compared the performance of
traditional supervised learning and active learning.
Researchers typically assess the performance of computational or statistical tech-

niques systematically using Monte Carlo studies [13]. Monte Carlo studies use a large
number of simulated datasets (or a large number of samples from a real dataset) and
calculate a test statistic for each one, resulting in an empirical sampling distribution. To
do this in the case of machine learning, however, requires (a) the ability to construct
large numbers of human-coded training sets from a given dataset, and (b) the ability to
simulate a human-in-the-loop active learning process.
In this paper, we present a systematic comparison between an artificial neural net-

work, one of the most powerful techniques in traditional supervised learning, with
nCoder, the most commonly used active learning technique in QE research. For a given
Code, we use an automated classifier previously determined to have very high predic-
tive accuracy (Cohen’s κ > 0.90, Shaffer’s ρ < 0.05) to code the entire dataset, which
enables us to sample large numbers of different coded training sets. To simulate the
nCoder active learning process, we designed an algorithm that approximates the hu-
man’s input in the process, namely seeding the classifier with initial regular expressions
and deciding what action(s) to take based on disagreements between the human and the
classifier during training. This enables us to address the following research question:
Which machine learning technique requires the least human-coded data to train a clas-
sifier that achieves high predictive accuracy?

3 Methods

3.1 Monte Carlo Simulation Study Design

In this pilot study, we compare two supervised learning approaches—a neural network
(traditional supervised learning) and nCoder (active learning)—to determine how much
human-coded data is necessary to achieve classifiers with high predictive accuracy. To
do this, we used a single large dataset for which there is a set of existing automated
classifiers (regular expression-based codes) that were validated by an expert human
rater previously. These classifiers enable us to simulate human coding decisions at scale
and also to simulate the active learning process. In what follows, we describe the gen-
eral simulation design—which could be used with other datasets and other machine
learning techniques—and in the subsequent sections, we describe in more detail how
the Monte Carlo simulation was implemented in our study.
To test the performance of the two machine learning processes, we randomly split

the dataset into two subsets: (a) a development set and (b) a prediction set. Each set was

6

coded with the validated classifier to simulate human ratings. We used the development
set to train automated classifiers, while the prediction set was used to evaluate the pre-
dictive accuracy of the classifiers.
After partitioning the data, we selected random samples of length 𝑛 from the devel-

opment set, where 𝑛 was multiples of 100 up to 3,000 (i.e., 100, 200, 300, ⋯, 2,900,
3,000). We set 3,000 as the upper bound because it is well above the reasonable amount
of data that human would typically code in order to train a classifier in QE context.
A classifier was constructed and developed for each sample. For the implementation

of the neural network approach, each sample was given to the neural network algorithm.
For nCoder, we designed a human-in-the-loop simulation algorithm where a classifier
was developed iteratively using 100 items at a time, until a total of 3,000 lines was
reached. (Detailed descriptions on the implementation of each algorithm are given be-
low).
For each classifier, the classifier training process was repeated 100 times for each of

two Codes used in this study. We used those developed classifiers to code the prediction
set and computed Cohen’s kappa against the simulated human coding decisions pro-
duced by the previously validated classifier. This allowed us to compute a confidence
interval for the mean kappa values for each sample of length 𝑛 for each approach and
each Code.

3.2 Implementation of the neural network

Neural networks are a class of supervised learning techniques that loosely model the
neurons in a biological brain. A neural network consists of (a) an input layer, a set of
nodes that takes features from human-coded data; (b) an output layer, a set of nodes
that produces an outcome of 0 or 1 in the case of binary classification; and (c) some
number of hidden layers, sets of nodes that are in between the input and output layer
that process features from the previous layer(s) and pass them to the next layer of nodes
[3, 14].
There are multiple ways to implement a neural network, but for this pilot study, we

used it as a traditional supervised learning technique. We implemented the neural net-
work model that Cai et al. designed in [5]—the model uses an embedding layer that
represents each unique word by a vector at the beginning, followed by one bidirectional
Long Short Term Memory (LSTM) layer, and a sigmoid layer as the probability of the
output, with a cutoff threshold of 0.50. That is, a probability output for a given excerpt
that is greater than 0.50 is classified as 1, and otherwise 0.
For each sample, we preprocessed its text data with tokenization and lemmatization.

Then, this preprocessed set, which was also coded with the pre-validated classifier to
simulate a human-coded training set, was given to the neural network to develop an
automated classifier. The algorithm randomly selected 20% of the given training set
and used it as a validation set to tune the hyperparameters of a classifier.

7

3.3 Simulation of the nCoder active learning process

nCoder is an active learning technique commonly used in QE research. nCoder facili-
tates construction and validation of a set of regular expressions, such that any excerpt
in which one or more expressions occurs is classified as 1, and otherwise 0. To develop
a classifier in nCoder:

1. A human rater seeds an automated classifier with one or more regular expres-
sions.

2. nCoder randomly selects segments of previously unseen data and presents
them to the human rater to evaluate for the presence or absence of the Code.

3. nCoder computes Cohen’s kappa between the human coder and the classifier
for the Code.

a. If the agreement is above the threshold (typically κ > 0.90), the clas-
sifier development process terminates, and the current set of regular
expressions is used as a classifier.

b. If the agreement is below the threshold, the machine shows the hu-
man rater the excerpts on which there is disagreement, the rater uses
those disagreements to guide refinement of the classifier, and then
the process is repeated beginning with Step 2 until the threshold for
agreement is met (3a).

In order to model the human-in-the-loop process of nCoder, we designed the Ro-

bocoder, an algorithm that simulates this process. This algorithm compares the classi-
fier being trained (which we term the User Regex List or URL) with a simulated hu-
man’s coding decisions. Because the users who develop automated classifiers using
nCoder possess expertise and deep knowledge of the data and the Code for which the
classifier is being developed, we assume that the simulated human rater does not make
errors in coding segments for this study. Therefore, we simulate the human’s coding
decisions as the classification results from a pre-validated set of regular expressions
(the Ideal Regular expression List or IRL). To simulate the nCoder classifier develop-
ment process for a given Code on a given dataset, the Robocoder uses the following
process:

1. The Robocoder randomly selects five of the ten most frequent regular expres-
sions from the IRL to seed the URL. We chose five because nCoder suggests
starting with at least five regular expressions in the beginning, and we select
them from the ten most frequent because human experts are likely to seed a
classifier with common expressions first.

2. Each sample (length of 100) is coded with both the URL (classifier being de-
veloped) and the IRL (simulated human).

3. The prediction set is coded with both the URL and the IRL, and Cohen’s kappa
is computed between them.

8

4. The Robocoder identifies whether there are one or more excerpts from the
sample drawn in Step 2 for which the coding decisions of the URL and IRL
are different.

a. If there are any discrepancies in the ratings, the Robocoder will re-
solve differences between the ratings of the URL and IRL as follows:

i. For each item where the coding decisions of the URL and
IRL are different, the Robocoder finds all the regular ex-
pressions from the IRL that are not in the URL but that
would have been satisfied by the excerpt.

ii. Among those expressions, the Robocoder selects the one
that has the highest base rate and adds it to the URL, simu-
lating how a human would expand the regular expression
list in response to a false negative by the URL.

iii. After all differences are resolved, the Robocoder returns to
step 2.

b. If there are no discrepancies between the ratings of the URL and IRL,
the Robocoder checks whether the length of the accumulated sample
sets is 3,000.

i. If Yes, the Robocoder stops.
ii. If No, the Robocoder returns to Step 2.

We repeated this process 100 times for each of the two Codes used in this study.

3.4 Data

The dataset used in this study consists of 50,888 chat utterances from an engineering
virtual internship, Nephrotex, in which students work in teams to design a new filtration
system for kidney dialysis machines [7]. We used the coding scheme developed by
Arastoopour Irgens et al. [1], which includes a set of regular expression classifiers for
each Code. For this study, we used two Codes: CLIENT/CONSULTANT REQUESTS and
TECHNICAL CONSTRAINTS, as each has the lowest (0.07) and highest (0.16) base rate.
The regular expressions validated by Arastoopour Irgens et al. [1] showed high 𝜅 val-
ues with a human expert, and thus can be used to simulate human coding decisions (See
Table 1). Table 2 shows the frequency of each regular expression for each of the two
codes.

Table 1. Base rate, the number of regular expressions, and the Cohen’s kappa for each Code.

Code Base Rate Number of Regular
Expressions

Agreement between
Human Expert and

Classifier
CLIENT/CONSULTANT

REQUESTS
0.07 24 𝜅 = 0.94

TECHNICAL
CONSTRAINTS

0.16 21 𝜅 = 1

9

Table 2. Regular expressions for CLIENT/CONSULTANT REQUESTS and TECHNICAL CONSTRAINTS
(Base rates are sorted by the descending order and displayed up to three or four decimal point).

CLIENT/CONSULTANT REQUESTS TECHNICAL CONSTRAINTS
Regular Expression Base Rate Regular Expression Base Rate
^(?:(?!\bexternal).)*\bconsultant(?!.*\bexter-
nal)

0.034 \bmanufacturing process 0.034

\binternal consultant 0.012 \bprocesses 0.012
\bpatient 0.011 \bnano 0.011
\brequirement 0.010 \bhydro 0.010
\brequest 0.009 \bsteric 0.009
\bstandard 0.004 \bvapor deposition polymerization 0.004
\bminimum 0.004 \bphase inversion 0.004
\bPadma 0.002 \bnegative charge 0.002
\bAlan 0.002 \bPRNLT 0.002
\bRudy 0.002 \bvapor 0.002
\bWayne 0.002 \bPolyamide 0.002
\bsatisfy 0.002 \bmaterials 0.002
\bMichelle 0.002 \bchemical 0.002
\bhospital 0.002 \bdry-jet 0.001
\bDuChamp 0.001 \bjet 0.001
\bcomfort 0.001 \bbiological 0.001
\bProctor 0.001 \bcarbon nanotube 0.001
\bAnderson 0.001 \bpolysulfone 0.001
\bRao 0.001 \bPESPVP 0.001
\bHernandez 0.001 \bsurfactant 0.0008
\buser 0.001 \bPMMA 0.0005
\bclient 0.0009 \bCNT
\bsafety 0.0008
\brecommendations 0.0005

4 Results

Figs. 2 and 3 show the mean Cohen’s kappa values with 95% confidence intervals be-
tween the developed classifiers (URLs) and the pre-validated classifier used to simulate
human coding (IRL) on the prediction set for samples of length 𝑛 (See Fig.1 for the
Code CLIENT/CONSULTANT REQUESTS and Fig. 2 for the Code TECHNICAL
CONSTRAINTS). These plots demonstrate that nCoder requires considerably smaller
sample size to train an accurate classifier than a neural network. Even with 3,000 coded
excerpts as a training set, the neural network’s mean kappa remained below 0.90, a
common threshold used in QE research. On both of the Codes, while nCoder required
700 segments to be coded in order for the lower bounds of the confidence intervals to
be above 0.9, there is no case in our plots that the lower bounds of the confidence in-
tervals are above 0.9 for the neural network, meaning that the neural network requires
coding more than 3,000 segments to obtain an accurate classifier.

10

Fig. 1. Mean Cohen’s kappa metrics with 95% confidence intervals between the developed
classifiers (URLs) and the pre-validated classifier simulating human coding (IRL) on the pre-
diction set for the Code CLIENT/CONSULTANT REQUESTS

Fig. 2. Mean Cohen’s kappa metrics with 95% confidence intervals between the developed
classifiers (URLs) and the pre-validated classifier simulating human coding (IRL) on the pre-
diction set for the Code TECHNICAL CONSTRAINTS

11

5 Discussion

In this paper, we present a comparative study that evaluates the amount of human-coded
data needed by a neural network model (traditional supervised learning) and nCoder
(active learning) to develop an automated classifier that achieves high accuracy. Our
pilot results show that for the two Codes we tested, nCoder requires significantly less
human-coded data to train a classifier that achieves sufficient predictive accuracy com-
pared to the neural network technique.
This study enabled a systematic comparison between traditional supervised learning

and active learning approaches by conducting a Monte Carlo Simulation. Using a pre-
validated automated classifier to code the entire data that has very high predictive ac-
curacy, large numbers of different coded training sets were sampled to control for sam-
pling bias. Most importantly, we designed an algorithm that simulates nCoder, a hu-
man-in-the-loop active learning approach.
However, it is important to note that these results are largely dependent on the archi-

tectural design of machine learning approaches and the human-in-the-loop simulation.
In our study, the design of the Robocoder closely resembles how the actual human user
would update the classifier when resolving differences between the classifier and the
human. Therefore, we can model the behaviors of the users without conducting cost
and resource-intensive experiments with humans. However, we hypothesized that hu-
man raters do not make any mistakes or errors in coding process or when refining the
classifier. For instance, if the human-coded inputs have a substantial amount of error in
the beginning, while nCoder can correct the errors through iterations between the hu-
man and the machine, the neural network model would have low predictive perfor-
mance, because it is a linear process that cannot rule out any errors once the process
begins. On the other hand, if a human rater keeps adding incorrect regular expressions
that they think are important, it will require more iterations, so the number of samples
that human needed to code will increase in nCoder. Hence, we expect to address these
issues in the future studies.
Yet one important contribution of this study is that the presented method can be

expanded to any other Codes, datasets, and/or machine learning algorithms. By ran-
domly generating large numbers of coded training sets from a given dataset, we can
systematically control for the sampling bias that the previous studies using a single
training set did not address. In addition, the ability to simulate a human-in-the-loop
active learning process enables more thorough measurement by reflecting the iterative
and complex nature of the human involvement process.

Acknowledgements. This work was funded in part by the National Science Foundation
(DRL-1661036, DRL-1713110, DRL-2100320), the Wisconsin Alumni Research
Foundation, and the Office of the Vice Chancellor for Research and Graduate Educa-
tion at the University of Wisconsin-Madison. The opinions, findings, and conclusions
do not reflect the views of the funding agencies, cooperating institutions, or other indi-
viduals.

12

6 References

1. Arastoopour, G. et al.: Teaching and assessing engineering design thinking with
virtual internships and epistemic network analysis. Int. J. Eng. Educ. 32, 3, 1492–
1501 (2016).

2. Bakharia, A.: On the equivalence of inductive content analysis and topic modeling.
In: International Conference on Quantitative Ethnography. pp. 291–298 Springer
(2019).

3. Baradwaj, B.K., Pal, S.: Mining educational data to analyze students’ performance.
ArXiv Prepr. ArXiv12013417. (2012).

4. Bull, L. et al.: Active learning for semi-supervised structural health monitoring. J.
Sound Vib. 437, 373–388 (2018).

5. Cai, Z. et al.: Neural recall network: A neural network solution to low recall prob-
lem in regex-based qualitative coding. In: Proceedings of the 15th International
Conference on Educational Data Mining. p. XX (2022).

6. Cai, Z. et al.: Using Topic Modeling for Code Discovery in Large Scale Text Data.
In: International Conference on Quantitative Ethnography. pp. 18–31 Springer
(2021).

7. Chesler, N.C. et al.: A Novel Paradigm for Engineering Education: Virtual Intern-
ships With Individualized Mentoring and Assessment of Engineering Thinking. J.
Biomech. Eng. 137, 2, 024701 (2015). https://doi.org/10.1115/1.4029235.

8. Cho, J. et al.: How much data is needed to train a medical image deep learning
system to achieve necessary high accuracy? ArXiv Prepr. ArXiv151106348.
(2015).

9. Eagan, B.R. et al.: Can We Rely on IRR? Testing the Assumptions of Inter-Rater
Reliability. 4 (2017).

10. González-Carvajal, S., Garrido-Merchán, E.C.: Comparing BERT against tradi-
tional machine learning text classification, http://arxiv.org/abs/2005.13012,
(2021).

11. Goudjil, M. et al.: A Novel Active Learning Method Using SVM for Text Classi-
fication. Int. J. Autom. Comput. 15, 3, 290–298 (2018).
https://doi.org/10.1007/s11633-015-0912-z.

12. Hartmann, J. et al.: Comparing automated text classification methods. Int. J. Res.
Mark. 36, 1, 20–38 (2019).

13. Harwell, M.R.: Summarizing Monte Carlo results in methodological research. J.
Educ. Stat. 17, 4, 297–313 (1992).

14. Hernández-Blanco, A. et al.: A systematic review of deep learning approaches to
educational data mining. Complexity. 2019, (2019).

15. Holton, J.A.: The coding process and its challenges. Sage Handb. Grounded The-
ory. 3, 265–289 (2007).

16. Jelodar, H. et al.: Latent Dirichlet allocation (LDA) and topic modeling: models,
applications, a survey. Multimed. Tools Appl. 78, 11, 15169–15211 (2019).

17. Khandkar, S.H.: Open coding. Univ. Calg. 23, 2009 (2009).

13

18. Larson, S. et al.: Healthcare professionals’ perceptions of telehealth: analysis of
tweets from pre-and during the COVID-19 pandemic. In: International Conference
on Quantitative Ethnography. pp. 390–405 Springer (2021).

19. Miles, M.B., Huberman, A.M.: Qualitative data analysis: An expanded source-
book. sage (1994).

20. Ramezan, C.A. et al.: Effects of training set size on supervised machine-learning
land-cover classification of large-area high-resolution remotely sensed data. Re-
mote Sens. 13, 3, 368 (2021).

21. Scott, C., Medaugh, M.: Axial coding. Int. Encycl. Commun. Res. Methods. 10,
9781118901731 (2017).

22. Settles, B.: Active Learning Literature Survey. 47.
23. Shaffer, D.W., Ruis, A.R.: How We Code. In: Ruis, A.R. and Lee, S.B. (eds.) Ad-

vances in Quantitative Ethnography. pp. 62–77 Springer International Publishing,
Cham (2021). https://doi.org/10.1007/978-3-030-67788-6_5.

24. Yu, D. et al.: Active learning and semi-supervised learning for speech recognition:
A unified framework using the global entropy reduction maximization criterion.
Comput. Speech Lang. 24, 3, 433–444 (2010).
https://doi.org/10.1016/j.csl.2009.03.004.

25. Prodigy · An annotation tool for AI, Machine Learning & NLP, https://prodi.gy,
last accessed 2022/05/23.

